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Summary—The Wiener-Hopf technique is used to study the radi-
ation from a parallel-plane waveguide embedded in a homogeneous
anisotropic plasma in which the external magnetic field is perpen-
dicular to the direction of propagation and parallel to the perfectly
conducting planes of the guide. The incident field in the guide is a
TEM wave, which propagates in the positive z direction. The parallel-
plane guide terminates at z =0, causing a reflected field in the wave-
guide, a radiation field, and a surface wave that is guided along the
outer surface of one of the perfect conductors. Expressions are found
for these field components, and the results are discussed for the
different frequency ranges.

InTRODUCTION
@NE OF THE CLASSICAL problems in electro-

magnetic theory is that of radiation from a

parallel-plane waveguide or a circular waveguide
into free space [1], [2], [3]. In this paper, we shall study
the radiation from a parallel-plane waveguide which is
embedded not in free space, but in a homogeneous aniso-
tropic plasma. The geometry of the problem is sketched
in Fig. 1; the incident field is a TEM wave propagating
in the positive z direction. This wave is confined by two
perfectly conducting planes of zero thickness separated
by a distance 2¢ that terminate at 2=0. The planes are
embedded in a gyrotropic medium in which the external
magnetic field lies in the positive y direction; i.e., trans-
verse to the direction of propagation of the incident
wave and parallel to the perfectly conducting planes.
Since there is no field variation in the y direction, the
problem is two dimensional. The termination of the per-
fect conductors at z=0 causes a reflected field in the
parallel-plane waveguide, a radiation field, and a surface
wave propagating toward z= — « which is guided by
the outer surface of one of the perfect conductors. Ex-
pressions are found for the magnitudes of these field
components by using the Wiener-Hopf technique.
Seshadri [4], [5] has treated a similar problem with
surface waves and a semi-infinite, perfectly conducting
plane, and we shall make use of his notation and some
of his results.

TaeE PLasma MoDEL

The medium surrounding the parallel-plane wave-
guide of Fig. 1 is a uniform plasma, and there is a uni-
form magnetic field By, impressed in the y direction. We
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shall make the following assumptions:

1) The plasma as a whole is at rest.

2) It is “temperate.”

3) It is lossless.

4) The oscillations of the ions are negligible compared
with those of the electrons.

5) The magnetic field of the waves in the plasma is
much smaller than B,.

Then the electric and magnetic fields satisfy Maxwell’s
equations

V X H = juet'E (1)
VX E = —jouH 2
where all fields have a ¢¢* time dependence. Here ¢, and

uo are the dielectric constant and permeability of free
space, and the relative dyadic dielectric constant & is

€1 0 jéz
g = 0 e O 3)
—jEQ 0 €1

when the static magnetic field lies in the positive y direc-
tion. The components €, €, and ¢ are given by
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The plasma and gyromagnetic frequerncies are wp and .,
respectively, e is the electron charge, m the electron
mass, and NV the average electron density.
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Fig. 1—Parallel-plane waveguide in a transversely mag-
netized homogeneous plasma.

For the two-dimensional situation of Fig. 1, there is
only one component of magnetic field present H, and
only two electric field components, £, and E,. Using (1)
and (2) one can show

/ 0H oH
B=l v ® ’ (11)
wege 03 wepe  dx
¢ O0H &1 OH
B o=— 2 2w J9 O (12)
wepe 02 wege  Ox
92 02
e k2} H,=0 13
{622 dx? Y (13)
where
€ = 612 - 622 (14)
e
k= ko/‘/— (15)
€1
ko = w\/,:o:o- (16)

THE PROPAGATING MODES

There are two regions in which guided waves can exist
when a parallel-plane waveguide is immersed in gyro-
tropic medium as in Fig. 1. First, surface waves can exist
on the top or bottom of the perfectly conducting planes
outside the waveguide; secondly, there are the modes
inside the waveguide. Consider a single perfectly con-
ducting plane immersed in a plasma as shown in Fig. 2.
Seshadri has shown that the magnetic field of the sur-
face wave for x>0 is

ko[ €2I ; —
H, = Hexp [— —\/_ xt Ve koz:|

€1

£>0, &S0 (17)
provided that >0 [4]. For &> or <0 the surface
wave can travel only in the negative or positive z direc-
tions, respectively, 4.e., the wave has an undirectional
character. A similar equation holds for x <0.

The E waves which can exist in a parallel-plane wave-
guide filled with a gyrotropic medium (] xl <eain Fig. 1)
have been studied by Bers [6]. The lowest order mode is
a TEM mode whose magnetic field is

k0€2x

H,(x,2) = Hyoexp [i ijkO\/ZzJ

€1

—ae<Lx<a (18)
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Fig. 2—Perfectly conducting plane in anisotropic plasma, e >0.
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The upper and lower signs correspond to propagation
in the positive and negative z directions, respectively.

THE FORMULATION OF THE PROBLEM

Having investigated the surface wave and the wave-
guide modes that can exist, we shall proceed with the
boundary value problem. The total field H,» may be
written in terms of the incident and scattered fields.

koezx . N
H,r(x, z) = H,(x,2) + exp |:\/_ —jkov & z:|

€1

—aeZlzx<g¢

=H,(x, 2, |z >a (19)

The incident field is the term

koézx . N
exp I:\/_ — jkov/ €1 z]

€1

it represents a TEM wave of unit amplitude propagating
in the region —a<x<a. The scattered field H,(x, 2)
consists of the reflected modes in the waveguide, the
surface wave on the outside of the waveguide, and the
radiation field.

Now let us consider the boundary conditions which
must be satisfied. First, there can be no tangential elec-
tric field along the perfect conductor so that from (12)

€0H, jedH,
dz ox

0, x=ta, z<0. (20)

Secondly, E. and H, are continuous at x= +a, 2>0; in
fact, E, is continuous for all 2, if (20) is taken into con-
sideration. In addition to the boundary conditions,
there are the edge conditions which require that the
components of current density normal to the edges
vanish as p*? and the components tangential vanish as
o712, where p is the distance to the edge. H,(x, g) must,
of course, satisfy the Helmholz equation (13).

Let F(x, z) be the two-sided Laplace transform of
Hﬂ(x! Z),

F(z,s) = wa,,(x, z)e~s%dz. 21
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Then applying the transform to the Helmholz equation
(13) gives

62
{—0 + 5?4 kz} Flz,5) =0 (22)
ox>

Because F(x, s) is a solution of (22}, it has the form
F(x,s5) = A(s)e~iW @), x>a (23a)
= B(s)e7"* 4+ C(s)e’™”, —a<x<a (23b)

= D(s)eV xta), < —a (23¢)

where the branch of W, W=/s2Fk? is chosen which
equals &, if s=0. The positive exponential exp jW(x —a)
is not a suitable solution for F(x, s), x>a, since it be-
comes infinite as x—; similar reasoning excludes
exp —jWi(x+a) for x< —a.

We shall use the boundary conditions and the Wiener-
Hopf technique to find 4 (s), B(s), C(s), and D(s); the
inverse transform then yields the scattered field. By
the continuity of Hyp at x=¢, 2>0

ézkoa

Hy +: =Hﬂ ) +[
(a4, 2) (a—, 2) exp\/

€1

z>0 (24)

or using inverse transforms

1 cot+joo

2w

cg—Jjw

When z is positive, the contour may be closed in a semi-
circle at infinity in the left half plane with no additional
contribution from the semicircle. A suitable solution for
(25) is obtained by equating the bracketed quantity in-
side the integral to some function L(s) which is analytic
for Real (s) <Real (jk).

A(s) — B(s)e?"* — C(s)ei™*

exp [Egkoa/\/z]

= Li(s) + — (26)

s+jv e ko

For convenience we shall assume that %k has a small
imaginary part which will be set equal to zero in the

iA (x) — B(s)e " — C(s)e"* —
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final result. Similarly, from the continuity of H,(x, 2) at
x=—a, 23>0

D(s) — B(s)er"® — C(s)e—/"e

exp — exkoa// €1
= Ly + SRRV o
s+ jvV ek
Since E, is continuous at x=a, from (12),
oH y(a+, 2) . 0H(a+, %)
€ —— + jeg ————
0z dx
dH (a—, 3) 0H (a—, 2
= e +je o )—oo<z<oo. (28)
dz dx
Taking the transform of (28) yields
[ess + e W]A(s) — [eos + eaW]e 779 B(s)
— [eos — @V ]er™eC(s) = 0. (29)
Similarly from the continuity of £, at x= —a
[exs — eW]D(s) — [eas + W [e™*B(s)
— [eass — eW]e="eC(s) = 0. (30)
Ezkod }
exp —=—
v*_‘/_e‘: eids =0 5> 0, (25)
S +]k0\/€1

Because E, vanishes on the perfect conductor,

1 cotjoo d
— [egs +je1—] Fla+,s)essds =0, 2 <0 (31)
277V eygeo ox
therefore,

[ezs + eV ]A(s) = Ri(s) (32)

where R;(s) is analytic in Real (s)> —Real (). In a
like manner

[ezs — W] D(s) = Ry(s). (33)

Solving (26)—(30) for A(s) and D(s) in terms of Li(s)
and L,(s), and using (32) and (33) yields

2T Rus) = La(s)e ™ — L(s) + {exp[ ket 2]'Wa} ex [ 2k ]1 (34)
s) = s)eave — s —— — kg —exp| — —=koa .
€2TV? — €752 ' ' ’ s+ Ve ko Ve v e ’ f
26, W e2iwea R ( ) I ( ) 4- g2We], ( ) +
—_———— o = — s - g-7 a s _—
W — g ! : s+ jve ko
€9 €2 . 1
. d —ex Z_k + ex \:—— ~~ka—l-ZjI/Va] . 35)
{ P [\/ €1 0({\ P Ve ’ f ¢
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THE APPLICATION OF THE WIENER-HOPF TECHENIQUE

Eqgs. (34) and (35) contain sufficient information for
determining the scattered field. Adding and subtracting
(34) and (35) gives

e1[Ri(s) — Ra(s)]

sin Wa
Tels? + Boler|e W
jel o*ei] -

2 cosh [ EL koa:|
= Li(s) + La(s) + Ve (36)
' ’ s + jv/ eko
and
W [Ri(s) + Ra(s)]
es? + ko2e]e 7" cos Wa
€2
2 sinh l: —koajl
= Li(s) — Las) + va 2 s
' : s + v e ko

We shall solve each of these equations using the
Wiener-Hopf technique, and then add the results to find
Ri(s) and Rs(s). Consider (36) first. One can show
(see [7]) that

e~ sin Wa

Rt S CL SORED
where
sin ka2 7@ s
M (s) = l: } exp {—xl(s) — W cos™! ~:'
k T ik
11 (1 + i) e=#10n (39)
n=1 Cn
® 1 2
e 77 R O T jka
i\ 2
Cn = 1/(——) — k2 (41
a
C’ = 0.5772 (Euler’s constant). (42)

Here M,(s) is analytic in Real (s)>Real (—jk) and
M_(s) is analytic in Real (s) <Real (jk). Because M(s)
is an even function of (s), M (s)=M_(—s), and as
Js[——wo, M., (s) and M_(s) are asymptotic to [s[*% in
the right and left half planes, respectively. Thus we may
rewrite (36) as

January

The final term on each side of (43) is added to remove
the pole on the right side of (43) at s= —j+/e; ko. The
left side of (43) is analytic for Real (s)> —Real (j&);
therefore, the left side of (43) is the analytic continua-
tion of the right side, and both sides may be equated to
some function H(s).

Using the edge conditions, the left side of (43) is
asymptotic to 1/’51 as s—w in the right half plane,
and the right side is asymptotic to a constant as \ s] —
in the left half plane. By Liouville’s theorem, H(s) is
zero;

Ri(s) — Rs(s)

€2

= dkoer V2% cosh —= koaM_(—jkov 1) M (s).  (44)
Ve
Solving (37) in a similar manner, one finds
Rui(s) + Rals)
€ JR—
— 4jkoer ?esinh \/2_ FoaV_(—j/ e ko) Na(s)
€1
= 45
\/k‘l’\/hko\/k—js (43)
where
e~ cos Wa = N, (s)N_(s) (46)
jalWv s
No(s) = [cos ka]'/? exp Ii—xﬂ(s) — cos“—.—}
T ik
i s
11 (1 + —) eI Pn (47)
n=1 -Pn
i a 1
) = —_——
X<) EI:(M_%)T Pni]
as
—l—g[ln - —!—1—-C’:| (48)
T 2jka
P,L=4/—————-k2 n=1,2,3"--. (49
(12

To obtain Ry(s) and R,(s), add and subtract (44) and
(45) with the result that

Rl(S)
Ry(s)

} = Zko:”ze[icosh \;Q_koaM_(—jko\/e_l)MJr(s)

€1

€9 JR
jsinh o= koaN—(—j~/e1 Bo) No(s)

€31

VE + Ve ko vk — s o)

where the + and — signs are used with Ry(s) and Ry(s),
respectively.

€9 €2

- e —
45k h— .
e[ Ra(s) — Ro(s)] jkov/€x cos N BoaM _(—jkon/<1)
jels + jkov/ e [ M ((s) PO
,— 2 cosh

= s~ jkm/’eTJM_<s>[L1(s> + Ly(s) +

€1 €1
s+ jhov e _' s —i—jk()\/;

— kO(L~I 4jkn\/€?€05h \/* kodM_(—]ko\/é_ﬁ

(43)



1965

THE DETERMINATION OF THE SCATTERED FIELD

In the regions x>¢a, x< —a, the scattered field is
given by the inverse transforms

(CERE=1 NI P

0—Joo

cexp [—jW (| «| — o) +s2]ds, 22 a (51)
Using (32), (33), and (50), (51) becomes
koe cg+jon
Hy(x,5) = ——
€17'°T]  cp—gw
€ —
-[i cosh e koaM _(— jv/etkg) M . (s) —
Ve
€ —
Jsinh — e koaN_(—jv/er ko) N4 (s)
_ \/61
V(k + Ve ko) (k — js)
=W (al—a)tsz g
P (52)

€3S i elI’V

in which the upper and lower signs pertain to ¥ >a and
x< —a. Contours for evaluating (52) are sketched in
Fig. 3.

Fig. 3—Contour for evaluating (52), >0, >0, &>0.

If x>a, >0, there is a pole in the right half plane,
and if x< —a, <0, there is a pole in the right half
plane. The residues at these poles yield the surface wave
H,, which travels in the negative z direction.

ZkOl ezi €9 I ——
H, = ——[cosh e koaM +(j~/ € ko)

PRYL €

— jsinh \;%koaﬁ(jx/ 3 ko)g
E+ e ko
kol € — _—
D {_ Kl i‘/eﬁll D 4 iva koz]. (53)

Note that because of the unidirectional character of the
surface wave, there is a surface wave on only one of the
two conductors at any given time. No surface wave poles
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exist for x> a, €,<0, and x < —a, € <0, because the resi-
dues of the apparent poles at s = —jkyv/e; vanish.

The radiation field is found by evaluating (52) by the
method of steepest descents. Set

2 =rcosf

(54)
(55)

+x— a=rsind, x 2 a.

Then for k7>>1, one may easily show that the radiation
field H,(r, 0) is

2kgee—itkrr/4)

'\/7?617’[61 — jeg cot i 0[ ]

Hy(”: 6) =

€9 J— '
-I:cosh —— koaM _(—jko/er) M (—jk cos 0)
V&

\/ei koaN_(—jn/e1 ko) N (—jk cos 0)
T VARGt vakysin (6] /2) (39

7 sinh

which is symmetrical with respect to the z-axis (f=0).
In the region a>x> —a the scattered field is repre-
sented by the inverse transform

1 optyo
H,(x, z) = —-f [B(s)e=2"= + C(s)ei=]es2ds  (57)
27['] eo—joo
where
—Ri(s)e™ 7" + Ry(s)e’Ve
B = ) (58)
27 sin 2Wa(ews + eIV)
Ri(s)eWe — Ry(s)e—iWe
) = 1(s) O (59)

27 sin 2Wa(ess — W) .

The quantity C(s) has a pole at s= —j\/eko, €>0; the
residue at this pole is equal to minus one so that the
incident wave is canceled in the region ¢ >x> —a, z>0.
The residue of B(s) at s=j+/erkq, €>0 yields the domi-
nant reflected wave H,.

P

Hyo = koer V2] & l:coth —i koa M+<jkg\7?5
Ve

el ]
ki tanh\—]: koa J\’+(]ku\/€1)
€1

+

(k + e ko) N

5 < 0. (60)

€2 R 7
-exp[-— T kox + jv €1 kos |,
1 -

Although (60) was derived for >0, one may also show
that it is valid for e, <0, and that the incident wave is
canceled for 2>0, e,<0 when a>x> —a. Higher order
reflected modes occur at the zeros of sin 2Wa which are
in the right half plane.
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TABLE 1
SUMMARY OF PROPERTIES IN THE DIFFERENT FREQUENCY RANGES
Q € €2 k2 Surface wave Radiation field Remarks

0<2<Yy + - — Lower conductor No
% <QA<R + - + Lower conductor Yes
R<Q<Qs — + -+ Evanescent Not treated, incident wave evanescent
Q<A <Q; + -+ — Upper conductor No
Q<< o -+ + -+ Upper conductor Yes

1.00

REsULTS IN THE DIFFERENT FREQUENCY RANGES

As previously mentioned, we have assumed that ¢, >0
so that both the surface wave and the TEM wave in
the parallel-plane waveguide are propagating. We shall
exclude the frequency region R<Q2<+/1+R? from
further consideration, because here € <0 and these
waves are evanescent. Eq. (5) shows that e <0 for
Q<R and &>0 for Q> R, if the static magnetic field is
in the positive y direction. Reversing the direction of the
static magnetic field changes the sign of e.

We have also assumed that k% is real and positive.
It is known that 22> 0, if Q<Q<Q, or % <Q< o [5].

Here
== g/ (61)
2 4
Q=1+ R (62)
2, =24 1/52+1. (63)
2 4

In the other frequency ranges 0 <Q<Q; and Q, <Q <,
k?<0 and in the solution 2 must be replaced by j&.
In this case the space wave is exponentially damped and
no power is radiated. Table I summarizes the behavior
of the parallel-plane waveguide immersed in a lossless
plasma with the static magnetic field in the positive
y direction.

It is also instructive to consider the cases where the
separation between the planes in very small or very
large; i.e., the cases ¢—0 and g—«. As ¢—0 the re-
flected power in the guide approaches 100 per cent, and
the surface wave and radiation field vanish. When «a is
very large, the incident energy is concentrated in the
vicinity of only one of the planes, and to a good approxi-
mation the scattered field is composed of two parts. The
first portion of the field is obtained by using Seshadri’s
results for the scattering of a surface wave by a single
semi-infinite, perfectly conducting plane in a plasma
[5]. The second portion is the diffracted field of the
second plane excited by a line source located at the edge
of the first plane where most of the incident energy is
concentrated,

REF ~ N
0.80 y) !

//
0.40 \ // ):

Fig. 5—Normalized radiation patterns, kya==/4, @=1.
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NUMERICAL RESULTS

In Fig. 4, the fraction of the incident power reflected
Prew, radiated Pgrap, and launched in the surface wave
Pgug, are plotted in the frequency range 0<Q2<2 for
R =2, For these calculations, @ was arbitrarily chosen so
that ke =Qn/4; i.c., at the gyromagnetic frequency the
spacing of the planes is one half a free space wavelength.
Below Q;=0.414, there is no radiation field, because the
propagation constant k is imaginary. Above @; the per-
centage of power in the radiation field increases until a
little below the gyromagnetic frequency. As one ap-
proaches the gyromagnetic frequency, ¢ becomes very
large and the incident field in the parallel-plane wave-
guide decays rapidly from its maximum at the lower
conducting plane. The upper conducting plane then has
a negligible effect, and nearly all the incident power is
launched in the surface wave as is the case for a surface
wave on a single semi-infinite, perfectly conducting
plane [5].

Fig. 5 contains the normalized radiation pattern of
power density for the parameters R=2, =1, and
koo =m/4; the free space radiation pattern is plotted on
the same scale for comparison. The plasma pattern is
clearly much broader than the free space pattern.

SUMMARY

The Wiener-Hopf technique yields the radiation field
of a parallel-plane waveguide embedded in a lossless
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anisotropic plasma whose gyrotropic axis is perpendicu-
lar to the direction of propagation and parallel to the
surface of the conductors. Expressions for the reflected
TEM mode in the waveguide, the surface wave, and the
radiation field in the far zone, are presented together
with numerical results. Differences due to frequency
changes are also discussed.
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