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Summary—The Wiener-Hopf technique is used to study the radi-

ation from a parallel-plane waveguide embedded in a homogeneous

anisotropic plasma in which the external magnetic field is perpen-
dicular to the direction of propagation and parallel to the perfectly

conducting planes of the guide. The incident field in the guide is a
TEM wave, which propagates in the positive z direction. The parallel-
plane guide terminates at z = O, causing a reflected field in the wave-
guide, a radiation field, and a surface wave that is guided along the

outer surface of one of the perfect conductors. Expressions are found
for these field components, and the results are discussed for the

different frequency ranges.

lNTRODUCTION

o

NE OF THE CLASSICAL problems in electro-

magnetic theory is that of radiation from a

parallel-plane waveguide or a circular waveguide

into free space [1], [2. ], [3]. In this paper, we shall study

the radiation from a parallel-plane waveguide which is

embedded not in free space, but in a homogeneous aniso-

tropic plasma. The geometry of the problem is sketched

in Fig. 1; the incident field is a TEM wave propagating

in the positive z direction. This wave is confined by two

perfectly conducting planes of zero thickness separated

by a distance 2a that terminate at z = O. The planes are

embedded in a gyrotropic medium in which the external

magnetic field lies in the positive y direction; i.e., trans-

verse to the direction of propagation of the incident

wave and parallel to the perfectly conducting planes.

Since there is no field variation in the y direction, the

problem is two dimensional. The termination of the per-

fect conductors at z = O causes a reflected field in the

parallel-plane waveguide, a radiation field, and a surface

wave propagating toward z = — oc which is guided by

the outer surface of one of the perfect conductors. Ex-

pressions are found for the magnitudes of these field

components by using the Wiener-Hopf technique.

Seshadri [4], [5] has treated a similar problem with

surface waves and a semi-infinite, perfectly conducting

plane, and we shall make use of his notation and some

of his results.

THE PLASMA MODEL

The medium surrounding the parallel-plane wave-

guide of Fig. 1 is a uniform plasma, and there is a uni-

form magnetic field 130, impressed in the y direction. We
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shall make the following assumptions:

1) The plasma as a whole is at rest.

2) It is “temperate.”

3) It is Iossless.

4) The oscillations of the ions are negligible com pared

with those of the electrons.

5) The magnetic field of the waves in the plasma is

much smaller than 130.

Then the electric and magnetic fields satisfy Maxwell’s

equations

V x H =jCMO~E (1)—

VX E= –jw#IIH (2)

where all fields have a e~wt time dependence. Here COand

PO are the dielectric constant and permeability of free

space, and the relative dyadic dielectric constant & is——

Cl o j62

g= o q o (3)

–jez o cl

when the static magnetic field lies in the positive y direc-

tion. The components 61, 62, and e3 are given by

@-R2_~
~1 = (4)

fl~ – R2

(5)

1
63=1— — (6)

Q?

fl=~ (7)
UP

R=~ (8)
UP

lve~
~2=_

D
(9)

meo

eBO
WC=——* (10)

m

The plasma and gyromagnetic frequencies are copand w.,

respectively, e is the electron charge, m the electron

mass, and N the average electron density.
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Fig. l—Parallel-plane waveguide in a transversely mag- Y
netized homogeneous plasma.
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For the two-dimensional situation of Fig. 1, there is

only one component of magnetic field present Hv and

only two electric field components, E, and Ex. Using (1)

and (2) one can show

jq (3HU e, dHU
Ez=— — ——

W60C dz – OJeoe ax
(11)

(13)

where

Fig. 2—Perfectly conducting plane in anisotropic plasma, CZ>0.

The upper and lower signs correspond to propagation

in the positive and negative z directions, respectively.

THE FORMULATION OF THE PROBLEM

Having investigated the surface wave and the wave-

guide modes that can exist, we shall proceed with the

boundary value problem. The total field HUT may be

written in terms of the incident and scattered fields.

THE PROPAGATING MODES

(15)

(16)

There are two regions in which guided waves can exist

when a parallel-plane waveguide is immersed in gyro-

tropic medium as in Fig. 1. First, surface waves can exist

on the top or bottom of the perfectly conducting planes

outside the waveguide; secondly, there are the modes

inside the waveguide. Consider a single perfectly con-

ducting plane immersed in a plasma as shown in Fig. 2.

Seshadri has shown that the magnetic field of the sur-

face wave for x >0 is

X>o, ,2 $;0’ (17)

provided that c1>0 [4]. For ez> or Q <O the surface

wave can travel only in the negative or positive z direc-

tions, respectively, i.e., the wave has an unidirectional

character. A similar equation holds for x <O.

The E waves which can exist in a parallel-plane wave-

guide filled with a gyrotropic medium (1 xl <a in Fig. 1)

have been studied by Bers [6]. The lowest order mode is

a TEM mode whose magnetic field is

-H.(x, z), 1x1 >a— (19)

The incident field is the term

it represents a TEM wave of unit amplitude propagating

in the region –a <~ <a. The scattered field H.(x, z)

consists of the reflected modes in the waveguide, the

surface wave on the outside of the waveguide, and the

radiation field.

Now let us consider the boundary conditions which

must be satisfied. First, there can be no tangential elec-

tric field along the perfect conductor so that from (12)

@aHu jeldHU
—+— = o,

dz
x=+a

ax
— > 2 <0. (20)

Secondly, E= and HU are continuous at x = ~ a, z> O; in

fact, E. is continuous for all z, if (20) is taken into con-

sideration. In addition to the boundary conditions,

there are the edge conditions which require that the

components of current density normal to the edges

vanish as p1j2 and the components tangential vanish as

p–I/2, where p is the distance to the edge, HU(X, z) must,

of course, satisfy the Helmholz equation (13).

Let F(x, z) be the two-sided Laplace transform of

[

k,e~x

1
HV(X, Z),

H.(z, z) = H.o exp t —
d;

+ jko<~z

s

co

F(x, s) = Hu(x, z)e–’”dz.
–a<z~a. (18)

(21)
—m
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Then applying the transform to the Helmholz equation

(13) gives

(22)

Because F(x, s) is a solution of (22), it has the form

F(a?, s) = A (S)e+’ (’–”), x>a (23a)

= l?(s) e–~w’ + c(s) e~w”’, --a<x~ a (23b)

= ~(s) @J (.+. ) x~—a (23c)
~—

where the branch of W, W= ~s - + k2 is chosen which

equals k, if s = O. The positive exponential exp j W(x –a)

is not a suitable solution for F(x, s), x > a, since it be-

comes infinite as x-+ ~ ; similar reasoning excludes

exp —jW(x+a) for x< —a.

We shall use the boundary conditions and the Wiener-

Hopf technique to find A (s), B(s), C(s), and D(s); the

inverse transform then yields the scattered field. By

the continuity of HUT at x = a, z >0

[

ezkoa
H,(a+, z) = IIu(a-, .2) + exp —== –

d c,
jkod; z1

Z >0 (24)

or using inverse transforms

final result. Similarly, from the continuity of H.(x, :;) at

x=—a, 2>0

D(s) – B(s)e~Wa – C(s)e–in”’

exp — c2koa//~
= L,(s) + — — . (27)

s+j~elkn

Since E, is continuous at x = a, from (12),

dHV(a+, z) dHV(a+, s)
~2—— — i- j,,

dz dx —

dllv(a-, z) dHu(a–, z)
= ~z +jq ax — –m <Z.: CY3. (28)

82

Taking the transform of (28) yields

[e,s + Cl?’V] A(s) – [62s+ 6,W]C’’’’’B(S)

- [6,S - ,,W]eJW’(s) = O. (29)

Similarly from the continuity of E, at x== – a

[,2s – C,W]D(s) – [62s + 6,W]e~~’B(s)

- [,2s - ,,w],-j~~’c(s;l = o. (30)

clkoa )
exp ~

.

–J \
- de,

.4 (x) — B (s)e–Jw” — c(s)eJwa –
-}

e,zds = () 2>0.
2T’j co–j~ .$ + jkodcl

(25)

When z is positive, the contour may be closed in a semi- Because E, vanishes on the perfect conductor,

circle at infinity in the left half plane with no additional

contribution from the semicircle. A, suitable solution for

~t~~~[’’’+j~l~]

F(a+, s)esZds = O, z <0 (31)

(25) is obtained by equating the bracketed quantity in-

side the integral to some function Ll(s) which is analytic therefore.
for Real (s) < Real (jk),

x( (s) – ~(s)e–Jwa — c(s)e~wa

exp [e2koa/<z]
= Iq(s) + – —,

S +jw”x ko
(26)

[62s + 6,w]/4 (s) = R,(s) (32)

where RI(s) is analytic in Real (s) > — Real (jk). In a

like manner

[,2s - Elw]D(s) = R2(S). (33)

For convenience we shall assume that k has a small Solving (26)–(30) for A (s) and D(s) in terms of L,(s)

imaginary part which will be set equal to zero in the and L(s), and using (32) and (33) yields

2clH’e2Jn’n 1

– ‘koa+2Jval-exti% koal} ’34’—-H

62
l?,(s) = Ll(s)e’”ro – L,(s) +

C12WZ— e2~s2 S + j~~l ko ‘Xp <E,

2qWe2jw”
— R,(s) = – L,(s) -t- e“wuLds) +

Elwz — 62ZS2 s +jI/el ko

{-exp[-&kOa]+exp[ --l~ka+2jWa]~. (35)
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THE APPLICATION OF THE WIENER-H• PF TECHNIQUE

Eqs. (34) and (35) contain sufficient information for

determining the scattered field. Adding and subtracting

(34) and (35) gives

61[R1(S) – R2(~)l

sin JVa
je[s2 + k02cl]e–f~Va —

w

l_~ Cl J
= L,(s) + L,(s) + (36)

S + jti~ko
and

Clw[l?l(s) + R?(s)]

C[S2+ ko2d=””a cos WU

[1

~2
2 sinh -= koa

d 6,
= I/l(s) – L2(S) + . (37)

S + jti; ko

We shall solve each of these equations using the

Wiener-Hopf technique, and then add the results to find

R,(s) and RJs). Consider (36) first. One can show

(see [7]) that

e–Wa sin JJJa
= M(s) = M+(S) M.(S) (38)

w

where

‘+(s)‘ETzex’[-’(se’vcos-’iil

~(1 + ~)e-sc~
%

(39)

[1
‘1(s)=s5 :–: +

.=l m .

‘4( )

Pm 2
c.= — –k’

a
(41)

C“ = 0.5772 (Euler’s constant). (42)

Here M+(s) is analytic in Real (s)> Real ( –jk) and

M-(s) is analytic in Real (s)< Real (jk). Because JI(s)

is an even function of (s), M+(s) = M–( —s), and as

Isl+m, M+(s) and M_(s) are asymptotic to Is I‘* in

the right and left half planes, respectively. Thus we may

rewrite (36) as

The final term on each side of (43) is added to remove

the pole on the right side of (43) at s = –jti~ ko. The

left side of (43) is analytic for Real (s)> – Real (jk);

therefore, the left side of (43) is the analytic continua-

tion of the right side, and both sides may be equated to

some function H(s).

Using the edge conditions, the left side of (43) is

asymptotic to 1/I s I as s+ ~ in the right half plane,

and the right side is asymptotic to a constant as I St -+ ~

in the left half plane. By Liouville’s theorem, H(s) is

zero;

R,(s)– R,(s)

= 4koe1–1/2e cosh & koaM-(–jko~Z)M+( s).
d 6,

(44)

Solving (37) in a similar manner, one finds

R,(s) + R2(S)

where
e–~?f’a cos Wa = N+(s) J-(s) (46)

[

jaW
N+(s) = [COSka]l/z exp –x,(s) – — ~os–l &

jk 1

0 fi(l + ;)e-””:
IL=l n

[
X,(s)=si a –;

.=, (}L – +)T n1

[
+: in :+1–C’

T 2jka 1

d

(?2 – *)%’ _ k,
P,, =

U2
P~=l,2,3, . . . . (49)

(47)

(48)

To obtain Rl(s) and l?,(s), add and subtract (44) and

(45) with the result that

RI(s)

} [
= 2ko,–1/2, f cosh L koaikf–(-jko/eJ M+(s)

R,(s) <,,

j sinh ~ koalv-( –j<~ko) V+(s) 1

where the + and – signs are used with Rl(s) and Rz(s),

respective y.

4jk04~cosh -& koaM–(–jko@
eIIRI(s) – R2(s)]

+
jc[S +jko~Z]M+(s) s + jko+del

r
~2

2 cosh -== koa
1 4jk,d~cosh & koaM–( –jkoti~)

1
= [S - jko~Z]M_(s) ~,(S) + L,(S) + , + ~:””z j + — —. (43)

s + ~“koti;
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THE DETERMINATION OF THE SCATTERED FIELD

In the regions x>a, x<–a, the scattered field is

given by the inverse transforms

.exp [—jW( I * I — a) + sz]ds, x ~ a. (51)

Using (32), (33), and (50), (51) becomes

[
. + cosh ~~ kOaM_(– j&ko)M+(s) –

in which the upper and lower signs Ipertain to x > a and

x < — a. Contours for evaluating (52) are sketched in

Fig. 3.

I I I
.

Fig. 3—Contour for evaluating (52), k >0, eI >0, C2>0.

If x > u, CZ> O, there is a pole in the right half plane,

and if x < –a, Q <O, there is a pole in the right half

plane. The residues at these poles yield the surface wave

HV, which travels in the negative z clirection.

Note that because of the unidirectional character of the

surface wave, there is a surface wave on only one of the

two conductors at any given time. N-o surface wave poles

of a Parallel-Plane Waveguide 81

exist for x > a, e2<O, and x < —a, C2<O, because the resi-

dues of the apparent poles at s = –jko~~ vanish.

The radiation field is found by evaluating (52) by the

method of steepest descents. Set

Z=r’coso (54)

~.r–a=rsinfl, x~a. (55)

Then for kr>> 1, one may easily show that the radiation

field H.(r, 0) is

2kOc8–~(~r–r/d)

II.(?’, 0) = —-———
~mkqr[el – j,, cot ] o \ ]

[
. cash —e!= koaM–(—jko~el)lf+ (–jk cos 19)

d c,

~z
j sinh T kOa~V_(–j~cl ko)N+(-jk cos f?~I

de,

1
(56)

VZ(k + w% ko) sin ( I .9I /2) “

which is symmetrical with respect to the z-axis (0= O).

In the region a > x > – a the scattered field is repres-

ented by the inverse transform

.O+J~

H.(X, 2):= +

s27V c,–jm

[B(S)P7WJ + c(s)e~’~~]e% (57)

where

B(s) =

c(s) =

The quantity C(s)

—Rl(s)e–~Tra + llz(s)e~~ra
(58)

2; sin 2Wa(c2s + elW)-

Rl(s) ef~~a– R2(s)e–jTr@
(59)

2j sin 2Wa(qs – eIW) “

has a pole at s= –j~~ko, ez>O; the

residue at this pole is equal to minus one so that the

incident wave is canceled in the region a > x:> —a, z >0.

The residue of B(s) at s =j~~ko, C2>0 yields the dc}mi-

nant reflected wave Hfio.

I C2I ‘–-
1 “ I [Coth ~ koa ~+w~)zHUO= keel-112 .eo

~ta,,h~~ koa ~,+(jkotia’

de, ‘
+

(k + de, k,) 1
[ ~2

.exp —=
1

kox + j&koz ,
de,

Z <0. (60)

Although (60) was derived for 62>0, one may also show

that it is valid for Q <O, and that the incident wave is

canceled for ~> O, Q <O when a > x > —a. IHigher cxder

reflected modes occur at the zeros of sin 2 J71o which are

in the right half plane.
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TABLE I

SUMMARY OF PROPERTIES IN THE DIFFERENT FREQUENCY RANGES

a II cl e, I k2 I SurfaCewave I Radiation field I Remarks

O<Q<Q, + – — Lower conductor No

w<Q<R + – + Lower conductor Yes

R<n<Q~ — + ‘+ Evanescent INot treated, incident wave evanescent

Qz<fl<fla + + — Upper conductor No

!il,r<n<m + + + Upper conductor Yes

RESULTS IN THE DIFFERENT FREQUENCY RANGES

As previously mentioned, we have assumed that c1>0

so that both the surface wave and the TEM wave in

the parallel-plane waveguide are propagating. We shall

exclude the frequency region R <G?< v’1 +R2 from

further consideration, because here el <0 and these

waves are evanescent. Eq. (5) shows that CZ<0 for

Q <R and ez> O for Q> R, if the static magnetic field is

in the positive y direction. Reversing the direction of the

static magnetic field changes the sign of ea.

We have also assumed that k2 is real and positive.

It is known that k2>0, if QI<fl<flz, or Q<!J< ~ [5].

Here

(61)

(62)

(63)

In the other frequency ranges O <Q <Q and Qz <Q <Q,

k’< O and in the solution k must be replaced by jk.

In this case the space wave is exponentially damped and

no power is radiated. Table I summarizes the behavior

of the parallel-plane waveguide immersed in a Iossless

plasma with the static magnetic field in the positive

y direction.

It is also instructive to consider the cases where the

separation between the planes in very small or very

large; i.e., the cases u-+0 and a+ m. As a~O the re-

flected power in the guide approaches 100 per cent, and

the surface wave and radiation field vanish. When a is

very large, the incident energy is concentrated in the

vicinity of only one of the planes, and to a good approxi-

mation the scattered field is composed of two parts. The

first portion of the field is obtained by using Seshadri’s

results for the scattering of a surface wave by a single

semi-infinite, perfectly conducting plane in a plasma

[5]. The second portion is the diffracted field of the

second plane excited by a line source located at the edge

of the first plane where most of the incident energy is

concentrated.
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Fig. 4—Pm~, PRAD, and PSUF,vs. Q, koa = Qir/4, R= 2.

Fig. 5—Normalized radiation patterns, k,a = rr/4, Q= 1.
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NUMERICAL RESULTS

In Fig. 4, the fraction of the incident power reflected

PREP, radiated PRAD, and launched in the surface wave

P SU~, are plotted in the frequency range O <Q <2 for

R =2. For these calculations, a was arbitrarily y chosen so

that koa = fhr/4; i.e., at the gyromagnetic frequency the

spacing of the planes is one half a free space wavelength.

Below Q= 0.414, there is no radiation field, because the

propagation constant k is imaginary. Above Q the per-

centage of power in the radiation field increases until a

little below the gyromagnetic frequency. As one ap-

proaches the gyromagnetic frequency, q becomes very

large and the incident field in the parallel-plane wave-

guide decays rapidly from its maximum at the lower

conducting plane. The upper conducting plane then has

a negligible

launched in

wave on a

plane [5].

effect, and nearly all the incident power is

the surface wave as is the case for a surface

single semi-infinite, perfectly conducting

Fig. 5 contains the normalized radiation pattern of

power density for the parameters R= 2, Q= 1, and

koa = 7r/4; the free space radiation pattern is plotted on

the same scale for comparison. The plasma pattern is

clearly much broader than the free space pattern.

SUMMARY

The Wiener-Hopf technique yields the radiation field

of a parallel-plane waveguide embedded in a lossless

anisotropic plasma whose gyrotropic axis is perpendicu-

lar to the direction of propagation and parallel to the

surface of the conductors. Expressions for the reflected

TEM mode in the waveguide, the surface wave, and the

radiation field in the far zone, are presented togetlher

with numerical results. Differences due to frequency

changes are also discussed,
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